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Insect infestation in rice stock is a signi¯cant issue in rice exporting business, resulting in
the loss of product quality, nutrient as well as the economic losses. However, detecting
the insect contamination with the traditional sorting techniques were destructive, inaccurate,
time consuming and unable to detect the internal insect infestation. This study used near
infrared (NIR) spectroscopy for obtaining the absorbent spectra from the insect contamination
in two kinds of rice samples, Milled Hommali rice (MHR) and Brown Hommali rice (BHR).
The mathematical methods of partial least squares (PLSs) regression and singular value de-
composition (SVD) were employed to construct the predicting model. The statistical analysis
results, R2, RMSEP, RPD and bias, concluded that the predictive models from PLS for
MHR and BHR were 0.95 and 0.90, 0.014 and 0.019, 4.79 and 3.11, as well as �0.007 and
−0.008, respectively; while the statistical analysis results from SVD for MHR and BHR were
0.97 and 0.96, 0.012 and 0.013, 5.71 and 5.39, as well as �0.003 and 0.002, respectively.
It showed that SVD technique performed better than PLS technique which shows that using
the advantage of SVD technique required less amounts of wave numbers for predicting and
was possible to construct the low cost handheld equipment for detecting the insects in
rice samples.
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1. Introduction

Rice is one of the major food sources with rich nu-
trition for mankind living and also becomes the
most important agricultural product in the Asian
economy. Thailand has been nominated as one of
the top largest rice production countries with about
22% of Thailand exporting goods.1 Before export-
ing, rice grain should be stored strategically for
economical purposes according to the time frame.
Generally, about 5–10% of grain stocks are signi¯-
cantly deteriorated due to insect infestation during
storage.2 The damage to grains by insects causes
loss of weight, nutrients, germination ability and
increased susceptibility to contamination by fungi
and downgrades the grain resulting in lowering its
market value.3 The damaged grains are not only
resulting in an economic loss in terms of quantity
and quality losses but could also be turned into
political issue in the exporting country. Rejection
from the buyer countries can occur, if a large pro-
portion of rice grains are damaged or infested with
insects or both. Internationally, standards of rice
products impurity have been announced by FAO
and WHO called CODEX ALIMENTARIUS. They
have been used as guidelines and codes of practice to
contribute to the safety, quality and fairness of the
international food trade. Certainly, the standard for
exporting rice is included in CODEX STAN 198-
1995 and has set the amount of ¯lth (impurities of
animal origin, including dead insects) which must
not exceed 0.1%.4 Domestically, the ministry of
commerce of Thailand has speci¯ed that the foreign
material allowance in premium grade of Thai rice
product must not exceed 0.2% for domestic trade.5

According to the report of FAO, Thailand has
encountered 10% of rice grain damage from
insect infestation yearly2; particularly, the damage
from rice weevil. Traditionally, insect detection
methods used the stick trier or the sleeve–type trier
to stab into the package and to collect the rice
sample for examination by visual inspection, sieving
and °oatation methods. These methods are widely
used for insect contamination in grain stock. Most
of these methods tend to have one or more dis-
advantages such as being subjective, destructive,
inaccurate, time consuming, especially, sometimes
unable to detect internal insect infestation. How-
ever, chemical and electrical detections of insect
infestation, such as carbon dioxide, uric acid

measurement, X-ray detection, electronic nose, and
acoustic impact emissions6–10 have become alter-
native examinations. The problems of some meth-
ods were their inability to detect low-intensity of
insect infestation and some of them lacked potential
when being examined automatically.

The near infrared (NIR) spectroscopy can
solve these problems with the real-time inspection,
which is more reliable and more accurate. The NIR
spectroscopy technique measures the chemical com-
position of biological materials using di®use re°ec-
tance or transmittance of the samples at several
wavelengths including detection of insect or piece of
insect in whole single grain, ground grain and bulk
grain samples.11–17 However, NIR spectroscopy de-
tection method also has weaknesses such as the
complex development of robust calibration models,
and inconsistency across several individual instru-
ments. Most of the commercial NIR instruments are
inconvenient for practical use in the ¯eld. The sug-
gested suitable predicting ranges of wavelengths of
NIR were calculated from statistically complex
mathematic methods. Sometime the selected wave-
lengths were not related to the chemical origin of
measuring materials or unable to explain the source
of chemical terms. The chemical compound pro¯les
of insect and of rice are used, related to their active
wavelengths resulting from NIR spectroscopy, then,
the mathematics algorithm is applied to solve the
proportion of the insect infestation which is a more
reliable and trustful method. The selected active
wavelengths can be used more numbers of wave-
length for rice weevil and rice than one wavelength
for each. Therefore, the set of equation becomes
greater than two equations from two wavelengths for
solving two unknowns (the equation becomes greater
than a square 2� 2 matrix; i.e., 3� 2; 4� 2 and so
on). Singular valued decomposition (SVD) is a
powerful mathematical technique to deal with the
solution of nonsquare sets of equations or matrices
based on the theorem of linear algebra18 and it has
been used with several applications such as measur-
ing bubble size distribution in bread doughs,
and identifying distribution of wheat compositions
throughout sizes from the First Break milling pro-
cess.19,20 Furthermore, SVD has been widely applied
in many areas of research, for instance, for mapping
the X-ray signal to measure the distribution of
acrylic acid in microporous polypropylene,21 for sig-
nal enhancement and noise suppression of seismic
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data22 and for detecting the defect using the mag-
netostrictive guided wave technique.23

In this study, Fourier transform near-infrared
(FT-NIR) spectral technique was performed for
carrying out the full spectral data. Therefore, the
objective of this study is to apply SVD for calcu-
lating the proportion of insect infestation in rice
stock from FT-NIR spectral data.

2. Material and Methods

2.1. Sample preparation and NIR data

acquisition

Brown Hommali rice (BHR) and Milled Hommali
rice (MHR) samples at approximately 14% moisture
content (wet basis) were used throughout this study
and collected directly from four di®erent rice mill
plants. Moisture content was determined using a
standard oven method (AOAC, 2000). The broken
kernels were removed leaving only the whole heal-
thy kernel for examination. Each rice sample was
mixed with dead rice weevils (DRW) by proportion
of 0%, 0.018%, 0.037%, 0.055%, 0.074%, 0.093%,
0.111%, 0.130%, 0.148%, 0.167%, 0.185%, 0.204%
and 0.222% by weight which covered the standard
allowance range of CODEX STAN 198-1995 and of
the standard of Thai rice product.

A multi-purpose analyzer FT-NIR spectrometer
(Bruker Corporation, Germany) with the wave
number range of 12,500–4,000 cm�1 (800–2500 nm)
was used throughout this experiment. The di®use
re°ectance mode at 16 cm�1 was set for measuring
sample. The spectrum of the sample was derived
from the average of 64 scans. The sample holder is
cylinder-shaped with 8.7 cm in diameter (inside),
9.0 cm in height, and 0.5 cm in thickness. The base
of the sample holder is made of a transparent crystal
quartz and the side is made of tin-plated metal. The
top of the container is an opening channel for ¯lling
and emptying samples.

100 g of uniformly mixed rice samples were ¯lled
into the sample holder; then, were placed on the
measuring station of the multi-purpose analyzer
FT-NIR. The experiments were carried out with
four rice sources of two types of rice samples
(MHR and BHR) and 13 levels of contamination
(10 measuring for each mixture), giving rise to a
total of 1040 experiments. The mathematical
spectral treatments (i.e., standard normal variate

(SNV), min–max normalization, Based line o®set,
multiplicative scattering correction (MSC), ¯rst
derivative, second derivative, smoothing, straight
line subtraction, SNV + ¯rst derivative and MSC
+ ¯rst derivative) were then calculated from NIR
raw absorbent spectra. Pretreated spectra were
used for further data analysis, PLS and SVD. The
°ow diagram throughout this experiment is illus-
trated in Fig. 1.

2.2. Data analysis by PLS regression

for NIR

The pretreated spectra and the proportion of rice
weevils were then analyzed using a partial least
squares (PLSs) regression of the OPUS 7.0 (Bruker
Corporation, Germany) program in order to estab-
lish the prediction model. The optimal number of
PLS factors was determined based on the least re-
sidual sum of square using the OPUS 7.0 program
whereby suitable ranges of wavelengths were auto-
matically identi¯ed. The best mathematical pre-
treatment for prediction of NIR spectra was
indicated using statistical information as expressed
by coe±cients of determination (R2

val), root mean
square error of prediction (RMSEP), ratio of stan-
dard deviation of reference data in the validation set
to standard error of prediction (RPD), and the av-
erage of the di®erences between the actual value
and the NIR value (i.e., bias).

Fig. 1. Flow diagram of the experiment.
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2.3. Applying SVD technique for NIR

The SVD approach was used as the tool for gener-
ating proportional results of rice weevil versus rice
sample. The SVD calculation was performed by
MATLAB program version 7.11.0. SVD method
uses the fundamental of matrices calculation based
on the following theorem of linear algebra.18 The
SVD structure was composed by three related ma-
trices as A � x ¼ b, where A describes a linear
mapping from the vector space x to the vector space
b. If the set of equations has m linear equation
with n coe±cients, the size of matrix A;x and b can
be de¯ned as m� n;n� 1; and m� 1, respectively.
A and b are known; the equation is solved to ¯nd
the unknown x.

In terms of square matrix, computing the x, the
inverse of A must be calculated then multiplied
with b as follows: x ¼ A�1 � b. In contrast, the SVD
method has three composition matrices of the ma-
trix A, as A ¼ U �W � V T. An m� n matrix A is
the product of an m� n column-orthogonal matrix
U , and n� n diagonal matrix W with positive or
zero elements, and the transpose of and n� n
orthogonal matrix V . Then ¼ A�1 ¼ V � [diag (1/
wjÞ� �U T ; where [diag (1/wj)] is the inverse of di-
agonal element of matrix W (if wj ¼ 0, the inverse
of wj is replaced with zero). Therefore, with the
substitution of A�1, the matrix x can be calculated
as x ¼ V � [diag (1/wjÞ] �U T � b.

Accordingly, knowing matrixA and vector b, the
unknown vector x can be calculated by a best ¯t
solution that minimizes the error. In the current
study, the matrix A was produced by NIR absor-
bent intensity of the particular wave numbers which
were pretreated by previous explained approach.
The selected wave numbers were the predominant
wave numbers indicating the important chemical
compositions of rice sample, BHR and MHR, and of
DRW. In this study, selected wave numbers were
three wave numbers for rice samples and three wave
numbers for rice weevil which were six wave num-
bers in total. The matrix b was produced by pre-
treating raw NIR absorbent spectra with same six
selective wave numbers as matrix A in unknown
mixture sample. From these two matrices, the ma-
trix x was calculated, giving the proportion of rice
weevil and rice sample in the unknown sample.
The sizes of matrices A;x and b were, therefore,
6� 2; 2� 1 and 6� 1, respectively and composed

as follows:

AWL1;DRW AWL1;rs

AWL2;DRW AWL2;rs

AWL3;DRW AWL3;rs

AWL4;DRW AWL4;rs

AWL5;DRW AWL5;rs

AWL6;DRW AWL6;rs

2
666666664

3
777777775
� xDRWi;1

xrsi;1

" #
¼

bWL1i;1

bWL2i;1

bWL3i;1

bWL4i;1

bWL5i;1

bWL6i;1

2
666666664

3
777777775
ð1Þ

where

(1) Am;n is the pretreated NIR spectroscopy ab-
sorbent intensity of the particular wave number
m of material n.

(2) xn;1 is the proportion of n in unknown sample i.
(3) bm;1 is the pretreated NIR spectroscopy absor-

bent intensity of the particular wave number m
of unknown sample i.

(4) m refers to the particular wave number
(WL1toWL6Þ of DRW and rs (dead rice weevil
and rice sample).

(5) n refers to DRW and rs.

The performance of SVD technique was evaluated
by statistical values, i.e., coe±cients of determina-
tion (R2

val) and root mean square error of prediction
(RMSEP), ratio of standard deviation of reference
data in the validation set to standard error of pre-
diction (RPD), and the average of the di®erences
between the actual value and NIR value (i.e., bias).

3. Results and Discussions

3.1. FT-NIR spectral analysis for rice

and rice weevil

The original spectra for BHR, MHR and DRW from
the multi-purpose analyzer FT-NIR spectrometer
were individually averaged and shown in Fig. 2.
It shows that at the wave number longer than
about 8500 cm�1, the NIR absorbance of DRW was
higher than the rice samples, while, at the shorter
wave number range, the NIR absorbance of rice
samples as greater than DRW.

This ¯gure demonstrates the predominant peaks
of BHR and MHR were at 10,098, 8370, 6895, 5685,
5207, 4806, 4438 and 4019 cm�1. The peaks of
10,098, 6895, 4806, 4438 and 4019 cm�1 were re-
lated to the chemical structure of starchy material
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and the peaks of 8370, 5685 and 5207 were related
to the chemical structure of CH3, CH2 and CONH,
respectively, regarding the report of Osborne
et al.,24 Furthermore, the predominant peaks for
DRW were 8486, 6912, 5824, 5215, 4929, 4667 and
4389 cm�1. The peaks were related to the chemical
structure of HC ¼ CH, aromatic, CH2, CONH,
CONH2;HC ¼ CH and CH3, respectively.

24

Figures 3 and 4 show the second derivative
spectra between 12500 cm�1 and 3500 cm�1 of
Hommali rice samples (BHR and MHR) and the
insect (DRW), respectively. In Fig. 3, the important
peaks of Hommali rice samples appeared at the
wave number 7043, 5886, 5616, 5261 and
4397 cm�1, where the chemical structure compo-
nents of these wave numbers were Phenolic or
ArOH, CH3, cellulose and starch, respectively.
Meanwhile, Fig. 4 shows the signi¯cant peaks of
DRW, these appeared at the wave number 7113,
5793, 5246, 4868, 4629, 4343 and 4050 cm�1, most
of the illustrated peaks were related to the O–H,
C–H, N–H and amide, which were respectively
ROH, CH2, POH (Phosphate), Protein, CONHR,
CH2 and CH3.

24 Additionally, some researchers13,25

mentioned that the wave number of 8489 cm�1

(1178 nm) is related to the chitin which is the ma-
jority composition in the insect cuticles and it is
close to the wave number of 8486 cm�1 on the initial
NIR spectra of DRW. It could be assumed that this
wave number was related to chitin. Nevertheless,
this wave number did not appear dominantly on the
second derivative of NIR spectra when compared
with other wave numbers as mentioned earlier.

3.2. Development of PLS models

The model for predicting DRW was developed by
applying the PLS factors in the wavenumber range
of 9407–5447 cm�1 and 4746–4421 cm�1 for pre-
dicting the percentage of DRW in MHR and in the
wave number range of 9407–4244 cm�1 of predict-
ing the percentage of DRW in BHR as demon-
strated in Table 1. The PLS factors of PLS model
for MHR and BHR were selected using the lowest
value of RMSEP as shown in Fig. 5. The best model
for predicting DRW in MHR sample was estab-
lished using nine PLS factors with standard normal
variate (SNV) pretreatment method. The vibration
bands used in the model were mainly starch, lipid
and cellulose. The MHR model expressed the sta-
tistical values of R2, RMSEP, RPD and bias of
0.95%, 0.014%, 4.79% and �0.007%, respectively.
Meanwhile, the model predicting DRW in BHR
sample was also established. The model employed
10 PLS factors from the straight line subtraction
pretreatment method. The vibration bands used in
the model were similar to the model of MHR, as
well as, the vibration band of sucrose was also in-
cluded. The BHR model, together, expressed the
statistical values of R2, RMSEP, RPD and bias
of 0.90, 0.019%, 3.11% and �0.008%, respectively.
Considering the selected NIR spectrum pretreating

Fig. 2. Initial NIR spectra of BHR, MHR and DRW obtained
using an FT-NIR spectrometer over the wave number region
12,500–4,000 cm�1.

Fig. 3. Average second-derivative of NIR spectra of BHR,
MHR obtained using an FT-NIR spectrometer over the wave
number region 12,500–4,000 cm�1.

Fig. 4. Average second-derivative of NIR spectra of DRW
obtained using an FT-NIR spectrometer over the wave number
region 12,500–4,000 cm�1.
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process, the suitable predicting models of MHR and
BHR picked SNV and straight line subtraction,
respectively. Even though both the pretreated pro-
cesses are for adjusting the baseline shifting, tilting
and scattering during the change of path length of
the NIR signals, the SNV is focused on scattering
correction and straight line subtraction is aimed on
baseline correction.26 In this case, the e®ect of
straight line subtraction pretreating process of BHR
could cause a variations in the chemical composi-
tions of brown rice, e.g., oil, ¯ber, starch and etc.,
which a®ects the path length of NIR spectrum.
While, the e®ect of SNV pretreating process of
MHR could cause the surface characteristic of mil-
led rice to have as more re°ection on its surface than
brown rice. Additionally, many researchers reported
that the baseline shift and scattering correction

Table 1. Statistics of prediction of DRW (%) in MHR and BHR by partial least square model.

Wave number
Type of rice ranges Pre-treatment PLS Factors R2

val RMSEP RPD Bias

MHR 9407–5447 cm�1 SNV 9 0.95 0.014 4.79 −0.007
(1063–1836 nm)

4746–4421 cm�1

(2107–2262 nm)
BHR 9407–4244 cm�1 Straight line subtraction 10 0.90 0.019 3.11 −0.008

(1063–2356 nm)

Notes: MHR — Milled Hommali rice.
BHR — Brown Hommali rice.
DRW — Dead rice weevils.
R2

val — The coe±cient of determination of validation set.
RMSEP — Root mean square error of prediction.
RPD — Ratio of standard deviation of reference data in validation set to standard error of prediction.
Bias — The average of di®erence between actual value and NIR value.

Fig. 5. Root mean square error of prediction versus PLS
factors for BHR and MHR.

Fig. 6. Regression coe±cient plots of the validated models for DRW prediction in MHR (left) and BHR (right) samples.
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were needed for milled rice and brown rice
materials.26–29

Considering the statistical value, it has been
suggested that an R2 of 0.83–0.90 indicates
that the model is usable with caution for most
applications, including research; whereas, an R2 of
0.92–0.96 implies that this model is usable in most

applications in the quality assurance level. Addi-
tionally, an RPD in the range of 3.1–4.9 has indi-
cated that the model is for fairly screening level.30

Figures 6 and 7 show the regression coe±cient
plots of validated model for DRW prediction and the
X-loading weight of the PLS factor plots of the best
validated model of prediction set using FT-NIR

Fig. 7. X-Loading weight plots of the validated models for DRW prediction in MHR (left) and BHR (right) samples.

Table 2. The absorption bands (from regression coe±cient and X-loading weight) with predominantly a®ected the prediction
model of DRW (%) in MHR using partial least square regression.

Wave number (cm�1Þ Wavelength (nm) Plot Band vibration21 Structure21

9327 1072 RC 2 x C–H stretching þ 2 x C–C stretching Benzene
8910–8887 1122–1125 PC1,PC2 C–H stretching second overtone Aromatic
8316–8285 1202–1207 PC1,PC2,PC3 C–H stretching second overtone CH2

8185 1222 RC C–H stretching second overtone CH
7614–7545 1313–1325 PC2,RC,PC3 2 x C–H stretching þ C–H deformation CH3

7267 1376 PC1 2 x C-H stretching þ C–H deformation CH2

7128–7082 1403–1412 PC2,RC O–H stretching ¯rst overtone ROH
6981 1432 PC3 N–H stretching ¯rst overtone CONH2

6804 1470 PC1 N–H stretching ¯rst overtone CONHR
6727 1487 PC2 N–H stretching ¯rst overtone CONH2

6071 1647 PC3 C–H stretching ¯rst overtone R–CH–CH
O

6017 1662 RC C–H stretching ¯rst overtone cis-RCH¼CHR
5979 1673 PC2 C–H stretching ¯rst overtone Aromtic
5786 1728 PC1,PC3 C–H stretching ¯rst overtone CH2

5547 1803 RC C–H stretching þ 2 x C–O stretching Cellulose
4575 2186 RC CH2 asym.stretchingþC¼stretching HC¼CH
4459 2243 RC N–H stretching þ NHþ

3 deformation Amino acid

Notes: MHR — Milled Hommali rice.
DRW — Dead rice weevils.
RC ¼ Regression coe±cient.
PC1 ¼ PLS factor1.
PC2 ¼ PLS factor2.
PC3 ¼ PLS factor3.
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spectrometer. The distinctive values of regression
coe±cient and X-loading a®ected the bond vibration
on the DRW prediction which was demonstrated in
the high peaks in the plots. The peaks of MHR and
BHR are reported in Tables 2 and 3, respectively.
The dominant wave numbers used in validated
model for MHR and BHR could be referred as the
peak vibration bonds that responded to the structure
of CH2, CH3;H2O, starch, aromatic, cellulose, amino
acid and so on. These were the fundamental chemical
compounds of rice and weevil. However, the main
constituent of rice sample, starch, did not predomi-
nantly appear on MHR. Correspondingly, the main
component of DRW, chitin (6667 cm�1 and
8489 cm�1), was also not presented. It could be
concluded that these components, starch and chitin,
did not absorb well the electromagnetic in the range
of NIR compared with other constituents. Consid-
ering the validated model for BHR, the wave number
of H2O is 5145 cm�1, appeared with high peak.
Additionally, from Table 1 of MHR model, the
OPUS program selected wave number ranging from
9407–5447 cm�1 and 4746–4421 cm�1 for producing
PLS model, which mean it abandoned wave number

band of 5446–4747 cm�1. The relinquished wave
number band was mainly the absorption band of
starch (shown in Table 3). This con¯rms the earlier
statement that the suitable predicting model of NIR
was calculated from statistically complex mathe-
matical methods in which sometimes those selected
wavelengths were not related to the chemical origin
of measuring materials or unable to explain the
source of chemical terms. Therefore, this model can
be interfered with the moisture content from two
objects, BHR and DRW, and also some absorption
bands of starch were not selected to perform the PLS
model. This model was, then, not a robust model for
predicting.

The scatter plots of the best equation (shown in
Table 1) for predicting percentage of DRW in MHR
and BHR samples versus the actual percentage of
DRW in MHR and BHR samples are shown in
Fig. 8. The NIR spectra for PLS model prediction of
DRW percentage in MHR were pretreated by SNV
technique and in BHR were pretreated by straight
line subtraction technique. Most of the predicting
samples from validation set were gathered nearby
the target line, which implied that using PLS

Table 3. The absorption bands (from regression coe±cient and X-loading weight) with predominantly a®ected the prediction
model of DRW (%) in BHR using partial least square regression.

Wave number (cm�1) Wavelength (nm) Plot Band vibration21 Structure21

9250 1081 RC 2 x C–H stretching þ 2 x C–C stretching Benzene
8872 1127 RC C–H stretching second overtone Aromatic
8224 1216 RC C–H stretching second overtone CH2

7884–7514 1268–1331 PC1,PC2 2 x C–H stretching þ C–H deformation CH3

7228 1383 RC 2 x C–H stretching þ C–H deformation CH2

7143–7105 1400–1407 PC3,PC1 O–H stretching ¯rst overtone ROH
6904 1448 RC 2 x C–H stretching þ C–H deformation Aromatic
6835 1463 PC2 N–H stretching ¯rst overtone CONH2

6094 1641 PC1 C–H stretching ¯rst overtone R–CH–CH
O

6040–6025 1655–1660 PC3,PC2 C-H stretching ¯rst overtone cis-RCH¼CHR
5346–5300 1870–1887 PC2,PC3,PC1 O–H stretchingþ 2 x C–O stretching Starch
5145 1940 RC O–H stretchingþO–H deformation H2O
4829–4822 2071–2074 PC2,RC O–H stretchingþO–H deformation ROH, Sucrose, Starch
4744–4729 2108–2115 PC1,PC3 N–H sym. stretchingþamide III CONH2, CONHR
4528 2208 RC N–H stretchingþC¼O stretching CONH2, Protein
4335 2307 RC,PC2,PC3 C–H stretchini þ C–H deformation CH2

Notes: BHR — Brown Hommali rice.
DRW – Dead rice weevils.
RC ¼ Regression coe±cient.
PC1 ¼ PLS factor1.
PC2 ¼ PLS factor2.
PC3 ¼ PLS factor3.
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method for predicting DRW in rice sample was

possible. The coe±cient of determination, R2, for

MHR and BHR model, therefore, was 0.95 and 0.90

respectively, as reported earlier in Table 1.

3.3. SVD from selected wave number

The wave numbers for substituting their pretreated
NIR spectra absorbance in Eq. (1) were selected
according to the predominant wave numbers which

Fig. 8. Scatter plots of prediction percentage of DRW obtained from PLS validation set versus the actual percentage of DRW in
MHR and BHR.

Table 4. The predominant wave numbers a®ect the chemical structures of rice samples and DRW.

Rice samples DRW

Wave number (cm�1Þ Structure24 Wave number (cm�1Þ Structure13,25

10101 Starch 8850 Lipid
6944 Starch, Sucrose 8489 Chitin
6545 Starch 6667 Chitin
6329 Starch, Glucose 5988 Lipid
5263 Starch
5000 Starch
4808 Starch, ROH, Sucrose
4762 Starch

Note: DRW — Dead rice weevils.

Table 5. Statistics of prediction of DRW (%) in MHR and BHR by SVD model.

Type of rice Wave number (cm�1) Pre-treatment R2
val RMSEP RPD Bias

MHR Rice : 5263, 5000, 4808 Base line o®set 0.97 0.012 5.71 �0.003
DRW : 8850, 8489, 5988

BHR Rice : 5263, 5000, 4808 SNV 0.96 0.013 5.39 0.002
DRW : 8850, 8489, 6667

Notes: MHR — Milled Hommali rice.
BHR — Brown Hommali rice.
DRW — Dead rice weevils.
R2

val — The coe±cient of determination of validation set.
RMSEP — Root mean square error of prediction.
RPD — Ratio of standard deviation of reference data in validation set to standard error of

prediction.
Bias — The average of di®erence between actual value and NIR value.
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a®ect the band vibration of rice and DRW struc-
tures. Rice kernel mainly composes of starch;
therefore, the selected wave numbers must be re-
lated to the starch molecular structure which was
10,101, 6944, 6545, 6329, 5263, 5000, 4808 and
4762 cm�1. Rice weevil is an arthropod having
exoskeleton and called cuticle made of chitin.31 The
basic arthropod body structure consists of heart,
gut, brain, nerve cord and eye, which principally are
lipids.32 Consequently, the selected wave numbers
for DRW were 8850, 8489, 6667 and 5988 cm�1.
Table 4 shows the selected wave numbers of rice
sample and DRW are related to their chemical
structures. The NIR spectra of individual selected
wave numbers were pretreated by the approaches
explained in Sec. 2.1 The pretreated NIR spectra
from three selected wave numbers of rice and of
DRW, six wave numbers in total, were randomly
chosen for substituting in matrices [A] and [b] to
calculate the proportion of DRW in rice sample
matrix [x] by (Eq. (1)). The best prediction models
of MHR and BHR were considered from statistical
values, R2, RMSEP, RPD and bias. Table 5 shows
that the best set of wave numbers for predicting
percentage of DRW in MHR were 8850, 8489, 5988,
5263, 5000 and 4808 cm�1 with base line o®set
pretreatment. It gave R2, RMSEP, RPD and bias of
0.97%, 0.012%, 5.71% and �0.003% respectively.
For predicting percentage of DRW in BHR, the best
set of wave numbers was 8850, 8489, 6667, 5263,
5000 and 4808 cm�1 with SNV pretreatment. The
statistical values of R2, RMSEP, RPD and bias
were 0.96, 0.013, 5.39 and 0.002, respectively. The
results showed that the statistical values of the SVD

method were better than that of the PLS methods
but not signi¯cantly di®erent in terms of statistical
ranges. Correspondingly, the scatter plots of the
best equation for predicting percentage of DRW in
MHR and BHR samples versus the actual percent-
age of DRW in MHR and BHR samples are shown
in Fig. 9. The predicting data were more gathered
nearby the target line compared with the PLS
method, nevertheless, they indicated that the pre-
dicted percentage of DRW in both rice samples was
not di®erent from the actual percentage of DRW
in both rice samples. Additionally, the potential of
using the SVD method, selected only the related
wave number with the chemical constituents of rice
and DRW, could be easier and cheaper for con-
structing the handheld equipment for detecting
DRW in rice stock because it required less number
of light sources and detectors.

4. Conclusion

Prediction model of the DRW in rice sample using
SVD technique from NIR signals was performed and
the model's performance was compared with PLS
technique based on statistical information. The
wave numbers used in for SVD analysis technique
were selected from the predominantly responded
wave number of NIR to the major chemical com-
ponents of DRW and rice samples (chitin, lipid and
starch). Statistical results of employing SVD tech-
nique for predicting DRW in rice samples were
better than using PLS technique. Therefore, SVD
technique can be used as a tool for evaluating the
DRW in rice samples with less amount of wave

Fig. 9. Scatter plots of prediction percentage of DRW obtained from SVD analysis versus the actual percentage of DRW in MHR
and BHR.
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numbers. This ¯nding, therefore, provided the po-
tential for using only six wave numbers instead of
using the full range of NIR wave number for con-
structing the handheld equipment to operate on the
working site with lower production cost when
compared while using the NIR spectroscopy.
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